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Episode objectives

Link thermodynamics, statistical mechanics, and simulation.

Define variables, state functions, and observables.

Establish the data flow and working environment.

3 / 67



Time and length scales

∆tvibrations ∼ 10−15 s,

∆tconformations ∼ 10−9 s to 10−3 s,

Latoms ∼ 10−10m, Lproteins ∼ 10−8m.

Atomic simulation resolves ultra-fast scales.

Statistics link microstates to macroscopic averages.

4 / 67



Microscopic model

State = (r1, . . . , rN ,p1, . . . ,pN),

pi = mi ṙi .

The system is defined by 6N phase-space coordinates.

Potential energy captures the interactions between particles.
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From micro to macro

⟨A⟩ =
∫

A(r,p) ρ(r,p) dr dp,

Ā = lim
T→∞

1

T

∫ T

0
A(t) dt.

Ergodicity links time averages with ensemble averages.
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Simulation pipeline

1 System preparation (topology, coordinates, parameters).

2 Define the Hamiltonian and boundary conditions.

3 Time integration and trajectory generation.

4 Statistical analysis of observables.
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State variables

P, V , T , U, H = U + PV , G = H − TS , A = U − TS .

State functions depend only on the macroscopic state.

Path functions include work W and heat Q.
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First law and work

dU = δQ + δW ,

δW = −P dV +
∑
i

fi dxi .

Internal energy changes through heat or work exchange.

In simulation, δW arises from forces on particles.
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Second law and entropy

dS ≥ δQ

T
,

S = kB ln Ω.

Ω is the number of microstates compatible with the macrostate.
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Thermodynamic potentials

G = U + PV − TS ,

A = U − TS .

G minimizes at constant T ,P; A minimizes at constant T ,V .
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Differential relations

dG = −S dT + V dP +
∑
i

µi dNi ,

dA = −S dT − P dV +
∑
i

µi dNi .

Partial derivatives give measurable observables.
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Microstates and macrostates

S = kB ln Ω, Ω =
∑
micro

1.

Entropy increases favor states with more configurations.
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Free energy and equilibrium

∆G = ∆H − T∆S ,

∆A = ∆U − T∆S .

At equilibrium, ∆G = 0 for processes at fixed T ,P.
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Chemical potential

µi =

(
∂G

∂Ni

)
T ,P,Nj ̸=i

.

Controls matter exchange and phase equilibrium.
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Relation to probabilities

P(estado) ∝ e−βG , β = 1/(kBT ).

Free energy governs the statistical weight of macrostates.
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Example: equilibrium A ⇌ B

K = e−β∆G ,

∆G = −kBT lnK .

Relative stability is expressed in terms of ∆G .
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Classical ensembles

Microcanonical (NVE): N,V ,E fixed.

Canonical (NVT): N,V ,T fixed.

Isothermal-isobaric (NPT): N,P,T fixed.
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Canonical partition function

Z =
1

h3NN!

∫
e−βH(r,p) dr dp.

Central to deriving free energies and averages.
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Observables in NVT

⟨A⟩ = 1

Z

∫
A e−βH dr dp.

In simulation, they are estimated via time averages.
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NPT ensemble

∆ =

∫
dV e−βPV Z (N,V ,T ),

G = −kBT ln∆.

Includes volume fluctuations controlled by the barostat.
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Thermodynamic fluctuations

CV =
⟨E 2⟩ − ⟨E ⟩2

kBT 2
,

κT =
⟨V 2⟩ − ⟨V ⟩2

kBT ⟨V ⟩
.

Fluctuations connect statistics with macroscopic response.
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Classical Hamiltonian

H(r,p) =
N∑
i=1

p2i
2mi

+ U(r).

Split into kinetic and potential energy.
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Hamilton’s equations

ṙi =
∂H

∂pi
,

ṗi = −∂H

∂ri
.

Equivalent to Newton’s second law.
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Newton’s equations

mi r̈i = −∇iU(r).

Force equals the negative gradient of the potential.
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Energy conservation

dH

dt
= 0 (ideal NVE).

Numerical integration introduces controllable errors.
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Phase-space flow

dρ

dt
= {ρ,H} = 0 (Liouville equation).

Probability density is conserved by the Hamiltonian flow.
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Forces from the potential

Fi = −∇iU(r).

In MD, the dominant cost is evaluating U and Fi .
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Pair potentials

U =
∑
i<j

u(rij), rij = ∥ri − rj∥.

Simplify the total energy using pairwise interactions.
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Example: Lennard-Jones

uLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]
.

Short-range repulsion, medium-range attraction.
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Electrostatic energy

uC(r) =
1

4πϵ0

qiqj
rij

.

Dominant in biomolecular systems.
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Gradients and Hessian

∇U ≡
(
∂U

∂r1
, . . . ,

∂U

∂r3N

)
,

Hess = ∇∇U.

The Hessian describes local curvatures (normal modes).
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Kinetic/potential separation

Z = Zkin Zconf,

Zkin =
∏
i

(
2πmi

βh2

)3/2

.

Zconf depends only on U(r).
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Configuration distribution

P(r) =
e−βU(r)

Zconf
.

Basis for Monte Carlo and thermostatted MD sampling.
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Configurational free energy

A = −kBT lnZconf + const.

Links sampling to ∆A between states.
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Velocity distribution

P(v) ∝ e−β
∑

i
1
2
miv

2
i .

Allows initializing velocities at temperature T .
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Equipartition theorem

⟨K ⟩ = 3N

2
kBT .

Each quadratic degree of freedom contributes 1
2kBT .
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General form

P(E ) =
1

Z
e−βE .

The exponential weight penalizes high-energy states.
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Maxwell-Boltzmann distribution

f (v) = 4π

(
m

2πkBT

)3/2

v2e
− mv2

2kBT .

Characterizes the equilibrium velocity distribution.
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Statistical interpretation

Most particles cluster around vm.

The width grows with T .
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Graphic example

Source: Wikimedia Commons (CC BY-SA 3.0). [3]
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Simulation application

Initializing velocities according to f (v) prevents thermal bias.

Lets us check that the thermostat reproduces equilibrium.
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Phase space

Γ = (r,p) ∈ R6N .

Each point represents a full microstate.
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Liouville equation

∂ρ

∂t
+ {ρ,H} = 0.

Volume in Γ is conserved (Liouville theorem).
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Ergodicity

lim
T→∞

1

T

∫ T

0
A(t) dt = ⟨A⟩ensemble.

Key assumption for replacing ensemble averages with time averages.
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Trajectories in Γ

Source: Wikimedia Commons (CC BY-SA 4.0). [2]
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Physical interpretation

Closed orbits: periodic motion.

Open orbits: diffusion in high-energy regions.
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Definition

U(r) : R3N → R.

Describes the energy landscape where the system evolves.

48 / 67



Molecular mechanics potential

Visualizing the typical multi-basined MM surface for a small system.
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Enzymes and reactive Hamiltonians

Enzymatic catalysis reshuffles bonds, so the Hamiltonian must
describe bond breaking/forming events beyond fixed-topology
potentials.
Reactive force fields or QM/MM fragments introduce extra terms
that depend on electronic reorganization.

Transition-state surface highlighting why the potential energy landscape is richer near activated complexes.
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Reaction coordinates

ξ = ξ(r), F (ξ) = −kBT lnP(ξ).

Projection that summarizes the dynamics in a key coordinate.
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Barriers and metastable states

Local minima: metastable conformations.

Barriers control transition scales.
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Surface example

Source: Wikimedia Commons (CC BY-SA 4.0). [4]
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Dynamics on the surface

Classical integration produces trajectories on U(r).

Thermostats ensure canonical sampling.
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Potential decomposition

U = Ubond + Uangle + Udihedral + Unonbond.

Separation between bonded and non-bonded terms.
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Bonded terms

Ubond =
∑
b

kb(rb − r0b )
2,

Uangle =
∑
a

ka(θa − θ0a)
2.

Harmonic approximation around equilibrium geometries.
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Dihedrals and rotation

Udihedral =
∑
d

Vd

2
[1 + cos(ndϕd − γd)] .

Control rotational barriers and conformational preferences.
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LJ example

Source: Wikimedia Commons (CC BY-SA 4.0). [1]
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Parameters and validation

Force fields are fitted to quantum and experimental data.

Validation includes densities, energies, and conformations.
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Working directory

Environment variable COURSE DIR.

Structure: data/ (inputs) and results/ (outputs).
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Course systems

Simple system: alanine.

Complex system: protein + ligand.
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Data flow

1 Download base data.

2 Prepare topologies and coordinates.

3 Validate the computing environment.
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Reproducibility

Track library versions and random seeds.

Save input files and scripts.
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OpenMM general workflow

Load PDB/GROMACS/AMBER/CHARMM/TINKER structures with
the official scripts (e.g., simulatePdb.py, simulateGromacs.py,
simulateAmber.py, and simulateCharmm.py).

Create the Topology, System, and Integrator objects and wire
StateReporter/TrajectoryReporter to capture energies, forces,
and coordinates.

Execute integration steps defined by the application layer and save
checkpoints with the OpenMM-Setup routines (User Guide
§3.5–3.15).
simulateAmber.py accepts ‘.prmtop‘ + ‘.inpcrd‘, while
simulateCharmm.py and simulateGromacs.py respect their native
formats.

simulatePdb.py is the traditional starting point for alanine dipeptide
or unparameterized protein–ligand systems.

All scripts expose hooks to tweak reporters and shape output
formats that we then process with Python analysis scripts.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/simulatePdb.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateGromacs.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateCharmm.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateCharmm.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateGromacs.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulatePdb.py


Episode summary

The thermodynamic groundwork connects to statistical sampling.

The potential defines forces and probabilities.

The working environment ensures reproducibility.
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