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Speed vs. accuracy trade-offs

@ Speed: large time steps and reduced reporting.
@ Numerical accuracy: symplectic integrators, constraints, and a small
timestep.

@ OpenMM exposes knobs for dt, constraints, hydrogenMass, and
thermostats (§3.7.6-3.7.8).
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Time step and constraints

1 k
At ~ ~ o=

~ w .
) max
10 wmax H

@ With constraints=HBonds, the timestep doubles.

@ constraints=A11Bonds/HAngles allow bigger jumps but reduce
flexibility.
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Heavy hydrogens

new __ new _
mE" =amy,  Mpel, = Mheayy — (a — 1)my.

@ hydrogenMass=1.5*amu slows oscillations without changing the total
mass.

@ Used in integration scripts, e.g., argon-chemical-potential.py
adopts this trick.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py

Thermal and pressure coupling

@ LangevinIntegrator simulates a heat bath with friction ~.

@ Nosé-Hoover (chain) controls the canonical distribution while
preserving momentum.

@ Monte Carlo or Parrinello-Rahman barostats appear in the
simulateAmber.py scripts.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py

Reporting and checkpoints

o 'StateDataReporter’ tracks energy, temperature, volume, and RMSD.

@ '‘DCDReporter’ / ‘NetCDFReporter' save trajectories (OpenMM App
§3.13-3.14).

@ Use ‘CheckpointReporter’ to resume long simulations (OpenMM
§3.15).
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Continuous and discrete equations

@ Simulation replaces derivatives with finite increments.
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Time step

r(t + At) = r(t) + v(t)At + O(AL?).

@ At must resolve the fastest vibrations.
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Local and global error

error local = O(AtPTY),
error global = O(AtP).

@ Order-p integrators control the accumulation of error.
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Stability scale

1
At <

™~ 10 Wmax

@ Wmax comes from the fastest vibrational modes.
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Practical guideline

o Without constraints: At ~ 1 fs.
e With SHAKE/RATTLE: At =~ 2 fs.



Explicit Euler

t
VitAr = Ve + EAta

FerAr = It + VtAt.

@ Simple but unstable for molecular dynamics.
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Classical Verlet

Ft 2
Feyar = 2re — e ae + ;At .

@ Symmetric and time-reversible.
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Velocity Verlet

F: 5
= At + —At
repar = e+ VeAL + m )

F: +Feine

At.
2m t

Vitar = Ve +

@ Combines stability with direct access to velocities.
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Symmetry and stability

@ Symplectic integrators conserve volume in phase space.

@ They prevent energy drift in NVE.
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Practical choice

@ OpenMM uses Verlet- or Langevin-type integrators.

@ The choice depends on the desired ensemble.
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Leapfrog

F.
Virat/2 =Vioat/2 + ;Af,

Ferar = Fe+ Ve ae AL

@ Velocities and positions “leapfrog” through time.
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Graphical interpretation

Source: Wikimedia Commons (CC BY-SA 4.0). [2] o i —
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Advantages

@ Symmetric, reversible, and inexpensive.

@ Preserves energy better than Euler.
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Relation to Verlet

o Leapfrog and velocity Verlet are algebraically equivalent.

o Differences appear in how velocities are stored.
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Integrator choice

@ NVE: Verlet or Leapfrog.

e NVT: Langevin or Nosé-Hoover.



Total energy

@ In ideal NVE, E(t) is constant.



Energy drift

@ Numerical errors produce secular drift.

@ Controlled by reducing At.
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Instantaneous temperature

_ 2(K)
~ 3Nkg'

T

@ In NVE, T fluctuates around a mean value.



Quick checks

o Check stability of E(t) and the velocity distribution.

e Compare (K) with the theoretical value.
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Equilibration time

@ A pre-equilibration stabilizes the energy before collecting data.
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Thermostat goal

@ Impose a canonical distribution at temperature T.

@ Extract or inject energy in a controlled way.
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Langevin dynamics

mé = —VU — ymi + R(t),
(R(t)R(t)) = 2ymkg T 6(t — t).

@ Stochastic thermostat with friction and noise.
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Andersen

@ Reassigns velocities randomly with frequency v.

@ Good for sampling, less realistic dynamically.
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Nosé-Hoover

. . 1 p?
. =F; — ¢&pi, = L 3NkgT
pi=F; —&pi, ¢ Q(gf m 3Nkg

@ Deterministic thermostat with an extended variable.

) |
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Thermostat choice

@ Langevin: robust and stable.

@ Nosé-Hoover: more realistic dynamics if well tuned.
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Microscopic pressure

NkBT 1
P = \/Zr’f ii-

i<j

@ Pressure depends on kinetic energy and internal forces.
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Berendsen barostat

dV 1
=~ (Py— P)V.
dt TP(O )

@ Fast to equilibrate, does not reproduce exact fluctuations.
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Parrinello-Rahman

@ Scales the simulation cell with dynamic variables.

@ Allows anisotropic volume changes.
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NPT

@ Realistic ensemble for experimental conditions.

@ Combines thermostat and barostat.
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Practical choice

o Equilibration: Berendsen + Langevin.

@ Production: more rigorous barostat (Monte Carlo barostat).
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Motivation

o Eliminating fast vibrations allows increasing At.
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Holonomic constraints

o Fix distances or internal angles.
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SHAKE/RATTLE

@ SHAKE corrects positions; RATTLE corrects positions and velocities.



Numerical impact

@ Increases stability and reduces simulation cost.

@ May alter high-frequency modes.
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Recommendation

@ Use constraints on H bonds for biomolecules.
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Motivation for PBC

@ Avoids surface effects in finite systems.

@ Mimics an infinite system by replicating the cell.
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Periodic cell

r—r+na+nb+ n,c

@ a, b, c define the simulation box.
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2D example
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Implications for dynamics

@ Particles leaving re-enter through the opposite face.

@ The density in the simulated volume stays constant.
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Non-orthogonal boxes

@ Triclinic cells for crystals or tilted membranes.
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Minimum image convention

rij = mnin||r,- —r+n|.

@ Use the nearest periodic image to compute interactions.
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Visual example

Source: Wikimedia Commons (CC BY-SA 4.0). [1]



Cutoff radius

@ The minimum image requires r. < L/2 to avoid double counting.
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Energy impact

@ Errors arise if the cutoff is large or the density is low.
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Best practices

@ Adjust r. and box size according to the system density.
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Short-range interactions

@ LJ is truncated at r. with or without a smoothing function.
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Switch function

Uswitch(r) = s(r) u(r), s(r) €[0,1].

@ Avoids discontinuities in forces.



Tail correction

Ueail = 27rp/ r2u(r) dr.

@ Corrects energy and pressure when truncating LJ.
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Choosing r.

@ Larger r. improves accuracy but increases cost.
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Stability implications

@ An abrupt cutoff can introduce noise in the dynamics.
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Coulomb problem

1
uc(r) < = (long range).
r

@ Direct truncation produces large errors.
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Ewald

U= Ureal + Urec + Uself-

@ Split Coulomb into real and reciprocal sums.
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PME

@ Particle Mesh Ewald uses FFT to speed up the calculation.

60 /68



Accuracy

@ Control the error with mesh parameters and the Ewald alpha.
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Practical choice

@ For solvated biomolecules, PME is the standard.
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Trajectories

@ Save coordinates and velocities at regular intervals.

@ Balance between storage and temporal resolution.
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Observables

1 M
<A>szZ_1Ak.

@ Autocorrelation determines the effective number of samples.
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Random seeds

@ Document seeds to reproduce stochastic thermostats.

65 /68



Checkpoints

@ Save states to restart long simulations.
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Episode summary

@ Numerical integration controls stability and accuracy.
@ Thermostats and barostats set the ensemble.

o PBC and long-range electrostatics are critical in biomolecules.
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