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Speed vs. accuracy trade-offs

Speed: large time steps and reduced reporting.

Numerical accuracy: symplectic integrators, constraints, and a small
timestep.

OpenMM exposes knobs for dt, constraints, hydrogenMass, and
thermostats (§3.7.6–3.7.8).
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Time step and constraints

∆t ≈ 1

10ωmax
, ωmax ∼

√
k

µ
.

With constraints=HBonds, the timestep doubles.

constraints=AllBonds/HAngles allow bigger jumps but reduce
flexibility.
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Heavy hydrogens

mnew
H = αmH , mnew

heavy = mheavy − (α− 1)mH .

hydrogenMass=1.5*amu slows oscillations without changing the total
mass.

Used in integration scripts, e.g., argon-chemical-potential.py
adopts this trick.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py


Thermal and pressure coupling

LangevinIntegrator simulates a heat bath with friction γ.

Nosé-Hoover (chain) controls the canonical distribution while
preserving momentum.

Monte Carlo or Parrinello-Rahman barostats appear in the
simulateAmber.py scripts.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py


Reporting and checkpoints

‘StateDataReporter‘ tracks energy, temperature, volume, and RMSD.

‘DCDReporter‘ / ‘NetCDFReporter‘ save trajectories (OpenMM App
§3.13–3.14).
Use ‘CheckpointReporter‘ to resume long simulations (OpenMM
§3.15).
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Continuous and discrete equations

ṙ(t) = v(t), v̇(t) =
F(t)

m
.

Simulation replaces derivatives with finite increments.
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Time step

r(t +∆t) = r(t) + v(t)∆t +O(∆t2).

∆t must resolve the fastest vibrations.
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Local and global error

error local = O(∆tp+1),

error global = O(∆tp).

Order-p integrators control the accumulation of error.
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Stability scale

∆t ≲
1

10ωmax
.

ωmax comes from the fastest vibrational modes.
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Practical guideline

Without constraints: ∆t ≈ 1 fs.

With SHAKE/RATTLE: ∆t ≈ 2 fs.
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Explicit Euler

vt+∆t = vt +
Ft

m
∆t,

rt+∆t = rt + vt∆t.

Simple but unstable for molecular dynamics.
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Classical Verlet

rt+∆t = 2rt − rt−∆t +
Ft

m
∆t2.

Symmetric and time-reversible.
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Velocity Verlet

rt+∆t = rt + vt∆t +
Ft

2m
∆t2,

vt+∆t = vt +
Ft + Ft+∆t

2m
∆t.

Combines stability with direct access to velocities.
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Symmetry and stability

Symplectic integrators conserve volume in phase space.

They prevent energy drift in NVE.
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Practical choice

OpenMM uses Verlet- or Langevin-type integrators.

The choice depends on the desired ensemble.
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Leapfrog

vt+∆t/2 = vt−∆t/2 +
Ft

m
∆t,

rt+∆t = rt + vt+∆t/2∆t.

Velocities and positions “leapfrog” through time.
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Graphical interpretation

Source: Wikimedia Commons (CC BY-SA 4.0). [2]
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Advantages

Symmetric, reversible, and inexpensive.

Preserves energy better than Euler.
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Relation to Verlet

Leapfrog and velocity Verlet are algebraically equivalent.

Differences appear in how velocities are stored.
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Integrator choice

NVE: Verlet or Leapfrog.

NVT: Langevin or Nosé-Hoover.
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Total energy

E (t) = K (t) + U(t).

In ideal NVE, E (t) is constant.

23 / 68



Energy drift

Numerical errors produce secular drift.

Controlled by reducing ∆t.
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Instantaneous temperature

T =
2⟨K ⟩
3NkB

.

In NVE, T fluctuates around a mean value.
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Quick checks

Check stability of E (t) and the velocity distribution.

Compare ⟨K ⟩ with the theoretical value.
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Equilibration time

A pre-equilibration stabilizes the energy before collecting data.
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Thermostat goal

Impose a canonical distribution at temperature T .

Extract or inject energy in a controlled way.
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Langevin dynamics

mr̈ = −∇U − γmṙ + R(t),

⟨R(t)R(t ′)⟩ = 2γmkBT δ(t − t ′).

Stochastic thermostat with friction and noise.
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Andersen

Reassigns velocities randomly with frequency ν.

Good for sampling, less realistic dynamically.
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Nosé-Hoover

ṗi = Fi − ξpi , ξ̇ =
1

Q

(∑
i

p2i
mi

− 3NkBT

)
.

Deterministic thermostat with an extended variable.
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Thermostat choice

Langevin: robust and stable.

Nosé-Hoover: more realistic dynamics if well tuned.
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Microscopic pressure

P =
NkBT

V
+

1

3V

∑
i<j

rij · Fij .

Pressure depends on kinetic energy and internal forces.
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Berendsen barostat

dV

dt
=

1

τP
(P0 − P)V .

Fast to equilibrate, does not reproduce exact fluctuations.
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Parrinello-Rahman

Scales the simulation cell with dynamic variables.

Allows anisotropic volume changes.
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NPT

Realistic ensemble for experimental conditions.

Combines thermostat and barostat.
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Practical choice

Equilibration: Berendsen + Langevin.

Production: more rigorous barostat (Monte Carlo barostat).
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Motivation

Eliminating fast vibrations allows increasing ∆t.
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Holonomic constraints

gk(r) = 0, k = 1, . . . ,M.

Fix distances or internal angles.
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SHAKE/RATTLE

SHAKE corrects positions; RATTLE corrects positions and velocities.
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Numerical impact

Increases stability and reduces simulation cost.

May alter high-frequency modes.
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Recommendation

Use constraints on H bonds for biomolecules.
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Motivation for PBC

Avoids surface effects in finite systems.

Mimics an infinite system by replicating the cell.
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Periodic cell

r → r + nxa+ nyb+ nzc.

a,b, c define the simulation box.
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2D example

Source: Wikimedia Commons (CC BY-SA 4.0). [3]
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Implications for dynamics

Particles leaving re-enter through the opposite face.

The density in the simulated volume stays constant.
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Non-orthogonal boxes

Triclinic cells for crystals or tilted membranes.
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Minimum image convention

rij = min
n
∥ri − rj + n∥.

Use the nearest periodic image to compute interactions.
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Visual example

Source: Wikimedia Commons (CC BY-SA 4.0). [1] 49 / 68



Cutoff radius

The minimum image requires rc < L/2 to avoid double counting.
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Energy impact

Errors arise if the cutoff is large or the density is low.
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Best practices

Adjust rc and box size according to the system density.
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Short-range interactions

LJ is truncated at rc with or without a smoothing function.
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Switch function

uswitch(r) = s(r) u(r), s(r) ∈ [0, 1].

Avoids discontinuities in forces.
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Tail correction

Utail ≈ 2πρ

∫ ∞

rc

r2u(r) dr .

Corrects energy and pressure when truncating LJ.
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Choosing rc

Larger rc improves accuracy but increases cost.
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Stability implications

An abrupt cutoff can introduce noise in the dynamics.
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Coulomb problem

uC(r) ∝
1

r
(long range).

Direct truncation produces large errors.
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Ewald

U = Ureal + Urec + Uself.

Split Coulomb into real and reciprocal sums.
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PME

Particle Mesh Ewald uses FFT to speed up the calculation.
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Accuracy

Control the error with mesh parameters and the Ewald alpha.

61 / 68



Practical choice

For solvated biomolecules, PME is the standard.
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Trajectories

Save coordinates and velocities at regular intervals.

Balance between storage and temporal resolution.
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Observables

⟨A⟩ ≈ 1

M

M∑
k=1

Ak .

Autocorrelation determines the effective number of samples.
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Random seeds

Document seeds to reproduce stochastic thermostats.

65 / 68



Checkpoints

Save states to restart long simulations.
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Episode summary

Numerical integration controls stability and accuracy.

Thermostats and barostats set the ensemble.

PBC and long-range electrostatics are critical in biomolecules.
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