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Episode objectives

@ Prepare systems ready for simulation in OpenMM.
@ Standardize topologies and coordinates.

@ Produce reproducible, verifiable inputs.
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Preparation workflow

© Read the structure (PDB/MOL2/SDF).
@ Repair and complete missing residues.
© Protonate and assign charges.

@ Solvate, add ions, and define the box.
© Minimize and validate.
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Input files

o PDB: coordinates and experimental metadata.
e MOL2/SDF: ligands and small molecules.

@ Topology and parameters are assigned after loading.
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Essential identifiers

Residue = (chain, number, name),

Atom = (type, element, charge).

o Consistent identifiers prevent errors in the force field.

6/66



Reproducibility

@ Save preparation scripts.
@ Document library versions and parameters.

@ Avoid non-traceable manual steps.

7/66



Official modeling workflow

@ The OpenMM User Guide (§4.1-4.6) recommends reconnecting
hydrogens, adding solvent, and membranes before parameterization.

@ The examples repo includes simulateAmber.py +
simulateCharmm.py, and argon-chemical-potential.py to
validate free energies in simple liquids.

@ We reuse that infrastructure for alanine dipeptide and the
protein—ligand complex, extending scripts with membrane variables or
coarse-grained polymers.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateCharmm.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py

Additional systems

@ coarse_grained polymer.py (OpenMM Cookbook) builds
bead-spring topologies that show how to define masses and bonds
manually.

@ The same approach links to argon-chemical-potential.py, where
Lennard-Jones forces are parameterized and insertion free energy is
measured.

@ Biomolecular models benefit from combining these lightweight
examples with Amber-style solvation and heavy ligand handling.
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https://openmm.github.io/openmm-cookbook/latest/notebooks/tutorials/coarse_grained_polymer.html
https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py

Membranes and solvents

o Add solvent with ‘Modeller.addSolvent' and choose OPC/TIP3P
(User Guide §4.2).

@ For membranes, use ‘Modeller.addMembrane’ and then the
simulateAmber.py script with an anisotropic barostat.

@ Save the final topology to reproduce the system exactly (OpenMM
App §4.6).
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https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py

PDB quality

@ Resolution and B-factors indicate uncertainty.

@ Flexible regions often show gaps or low occupancy.

11/66



Missing residues

o PDB files may lack entire segments.

@ Reconstruction requires inferring geometry and stereochemistry.
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AltLocs and occupancy

Z occk < 1.
k

@ Choose the dominant conformation or average according to the goal.
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Active site in PDB

AAAAAAAA
DECIENGIES, TEcNOLoOIA
............




Superposition and RMSD

N
1 ref||2
RMSD = N;Hr;—rie 2.

@ Verify consistency with reference structures.



PDBFixer/Modeller

o Fills residues, corrects names, and removes unwanted ligands.

@ Prepares the system for force field assignment.
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Residue insertion

@ Uses geometric and stereochemical information.

@ Local minimization relieves clashes.
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Protonation and pH

7]

— 1 pH—pKa‘
GO

@ Determines charge states of titratable residues.



Charge states

o Tune histidines (HID/HIE/HIP), ASP/GLU, LYS/ARG.

@ Maintain consistency with the active site environment.
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Structural growth
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Potential decomposition

U= Ubond + Uangle + Udihedral + Unonbonded-

@ Basis for computing forces and energies.
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Bonds and angles

Ubond = Y _ kn(rs — rf)?,

b
Uangle = Z ka(ea - ‘92)2'

@ Harmonic approximation around the equilibrium.
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Dihedrals

V.
Udihedro = Z 7d [1 + cos(ngdd — vd)] -
d

@ Control rotational barriers and conformations.
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Nonbonded terms

o= [(2)- )]

Ue= L 99
471'80 r,-J-

@ LJ and Coulomb dominate long-range interactions.
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Force field selection

e Proteins: AMBER/CHARMM/OPLS.
o Ligands: OpenFF or other parameterizers.

o Validate compatibility with the rest of the system.
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Parameter consistency

@ Avoid mixing force fields without clear rules.

@ Check units and energy scales.
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Partial charges

Z ai = Qtotal-
i

@ The total must match the protonation state.
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Electrostatic fitting

@ RESP and AM1-BCC derive charges from electrostatic potentials.

@ The charge distribution affects binding energies.
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Dihedral scans

E(¢) = Eo+ Y Viccos(kp — k).

k

o Fit rotational profiles on ligands.



Type assignment

@ Atomic types determine LJ and bond parameters.

@ Inconsistencies yield unphysical energies.
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Ligand validation

@ Check geometry, chirality, and net charges.

o Compare with experimental or QM references.
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Box choice

@ Cubic, orthorhombic, or dodecahedral.

@ Trade-off between cost and distance to the periodic image.
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Number of water molecules

Na
Mu2o

Nh2o ~ p V

o Estimate the box size according to the target density.
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lonic concentration

Nion = C V Nay.

@ Adjust molarity for physiological conditions.
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Solvated box

DECINGIES TECNOLOGIA
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Water models

e TIP3P, SPC/E, TIP4P: different densities and dynamics.

@ Choose the model compatible with the force field.
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Solvent trimming

@ Keep a minimum buffer around the solute.

@ Prevent artificial interactions with the periodic image.
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Density check

o Verify density after NPT equilibration.
@ Adjust the size if the density drifts.
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Neutralization

@ Neutralizing the net charge improves numerical stability.
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lonic strength

1
| = EZ.:c,'z,?.
1

@ Controls electrostatic screening.
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Debye length

Ap — €kBT
D=\ 2Nge2r

@ Sets the range of electrostatic interactions in solution.

41/66



PME and cutoff

@ PME handles long-range Coulomb interactions efficiently.

@ Choose a cutoff consistent with the box.
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Charge/solvent balance

@ Check that the system is not overloaded with ions.
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Membrane models

o Lipid bilayers require anisotropic boxes.

@ The orientation must align with the protein.
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Lipid bilayer




Area per lipid

@ Key metric for membrane stability.
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Membrane thickness

@ Controls the exposure of hydrophobic domains.

@ Adjust with minimization and equilibration.
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Initial restraints

@ Restraining the protein prevents collapse during equilibration.
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Objective function

mrin U(r).

@ Reduces clashes and improves initial stability.
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Gradient descent

Y41 =Tk — OszU(I’k).

@ Robust method for minimizing high energies.
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Conjugate gradient

@ More efficient near the minimum.

@ Reduces the number of force evaluations.
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Harmonic restraints

k
Urest = E Z”ri - r?||2.
i

@ Keep the structure while the solvent relaxes.
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Convergence criteria

@ Gradient norms and energy drop.

@ Stop when forces are small.
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Geometric check

@ Reasonable bond lengths and angles.

@ No steric clashes.
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Energy by component

@ Review LJ, Coulomb, and bond contributions.

o ldentify outliers.
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Comparison with reference

AU = Unuevo - Uref~

o Large differences signal parameterization issues.
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Stability check

@ Run a short NVT to catch numerical explosions.

@ Inspect potential energy and temperature.
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Stable solvent

@ Ensure there are no voids or overlaps.
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Checklist

o Clean PDB, correct protonation, neutralized system.

@ Topology file saved.
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Save the system

@ Export PDB and topology with parameters.
@ Save the minimized state.
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Output formats

e PDB, Amber prmtop/inpcrd, OpenMM XML.



Traceability

@ Log scripts and configurations used.

@ Version the parameters.
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Seeds and reproducibility

@ Save random generator seeds.

@ Document initial conditions.
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Folder structure

@ Separate inputs, results, and temporary files.

@ Simplifies auditing and system reuse.
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Episode summary

@ Preparing the system is key for reliable results.
@ Protonation and solvation decisions impact the dynamics.

@ Thorough validation avoids costly mistakes.
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