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Episode objectives

Prepare systems ready for simulation in OpenMM.

Standardize topologies and coordinates.

Produce reproducible, verifiable inputs.
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Preparation workflow

1 Read the structure (PDB/MOL2/SDF).

2 Repair and complete missing residues.

3 Protonate and assign charges.

4 Solvate, add ions, and define the box.

5 Minimize and validate.
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Input files

PDB: coordinates and experimental metadata.

MOL2/SDF: ligands and small molecules.

Topology and parameters are assigned after loading.
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Essential identifiers

Residue = (chain, number, name),

Atom = (type, element, charge).

Consistent identifiers prevent errors in the force field.
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Reproducibility

Save preparation scripts.

Document library versions and parameters.

Avoid non-traceable manual steps.
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Official modeling workflow

The OpenMM User Guide (§4.1-4.6) recommends reconnecting
hydrogens, adding solvent, and membranes before parameterization.

The examples repo includes simulateAmber.py +
simulateCharmm.py, and argon-chemical-potential.py to
validate free energies in simple liquids.

We reuse that infrastructure for alanine dipeptide and the
protein–ligand complex, extending scripts with membrane variables or
coarse-grained polymers.
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https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateCharmm.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py


Additional systems

coarse grained polymer.py (OpenMM Cookbook) builds
bead-spring topologies that show how to define masses and bonds
manually.

The same approach links to argon-chemical-potential.py, where
Lennard-Jones forces are parameterized and insertion free energy is
measured.

Biomolecular models benefit from combining these lightweight
examples with Amber-style solvation and heavy ligand handling.
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https://openmm.github.io/openmm-cookbook/latest/notebooks/tutorials/coarse_grained_polymer.html
https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py


Membranes and solvents

Add solvent with ‘Modeller.addSolvent‘ and choose OPC/TIP3P
(User Guide §4.2).
For membranes, use ‘Modeller.addMembrane‘ and then the
simulateAmber.py script with an anisotropic barostat.

Save the final topology to reproduce the system exactly (OpenMM
App §4.6).

10 / 66

https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py


PDB quality

Resolution and B-factors indicate uncertainty.

Flexible regions often show gaps or low occupancy.
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Missing residues

PDB files may lack entire segments.

Reconstruction requires inferring geometry and stereochemistry.
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AltLocs and occupancy

∑
k

occk ≤ 1.

Choose the dominant conformation or average according to the goal.
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Active site in PDB
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Superposition and RMSD

RMSD =

√√√√ 1

N

N∑
i=1

∥ri − r refi ∥2.

Verify consistency with reference structures.
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PDBFixer/Modeller

Fills residues, corrects names, and removes unwanted ligands.

Prepares the system for force field assignment.
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Residue insertion

Uses geometric and stereochemical information.

Local minimization relieves clashes.
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Protonation and pH

[A−]

[HA]
= 10pH−pKa .

Determines charge states of titratable residues.
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Charge states

Tune histidines (HID/HIE/HIP), ASP/GLU, LYS/ARG.

Maintain consistency with the active site environment.
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Structural growth
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Potential decomposition

U = Ubond + Uangle + Udihedral + Unonbonded.

Basis for computing forces and energies.
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Bonds and angles

Ubond =
∑
b

kb(rb − r0b )
2,

Uangle =
∑
a

ka(θa − θ0a)
2.

Harmonic approximation around the equilibrium.
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Dihedrals

Udihedro =
∑
d

Vd

2
[1 + cos(ndϕd − γd)] .

Control rotational barriers and conformations.
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Nonbonded terms

ULJ = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]
,

UC =
1

4πε0

qiqj
rij

.

LJ and Coulomb dominate long-range interactions.
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Force field selection

Proteins: AMBER/CHARMM/OPLS.

Ligands: OpenFF or other parameterizers.

Validate compatibility with the rest of the system.
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Parameter consistency

Avoid mixing force fields without clear rules.

Check units and energy scales.
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Partial charges

∑
i

qi = Qtotal.

The total must match the protonation state.
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Electrostatic fitting

RESP and AM1-BCC derive charges from electrostatic potentials.

The charge distribution affects binding energies.
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Dihedral scans

E (ϕ) = E0 +
∑
k

Vk cos(kϕ− γk).

Fit rotational profiles on ligands.
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Type assignment

Atomic types determine LJ and bond parameters.

Inconsistencies yield unphysical energies.

30 / 66



Ligand validation

Check geometry, chirality, and net charges.

Compare with experimental or QM references.
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Box choice

Cubic, orthorhombic, or dodecahedral.

Trade-off between cost and distance to the periodic image.
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Number of water molecules

NH2O ≈ ρV
NA

MH2O
.

Estimate the box size according to the target density.
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Ionic concentration

Nion = C V NA.

Adjust molarity for physiological conditions.
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Solvated box
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Water models

TIP3P, SPC/E, TIP4P: different densities and dynamics.

Choose the model compatible with the force field.
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Solvent trimming

Keep a minimum buffer around the solute.

Prevent artificial interactions with the periodic image.
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Density check

Verify density after NPT equilibration.

Adjust the size if the density drifts.
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Neutralization

Neutralizing the net charge improves numerical stability.
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Ionic strength

I =
1

2

∑
i

ciz
2
i .

Controls electrostatic screening.
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Debye length

λD =

√
εkBT

2NAe2I
.

Sets the range of electrostatic interactions in solution.

41 / 66



PME and cutoff

PME handles long-range Coulomb interactions efficiently.

Choose a cutoff consistent with the box.
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Charge/solvent balance

Check that the system is not overloaded with ions.

43 / 66



Membrane models

Lipid bilayers require anisotropic boxes.

The orientation must align with the protein.
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Lipid bilayer
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Area per lipid

Alip =
Acaja

Nlip/2
.

Key metric for membrane stability.
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Membrane thickness

Controls the exposure of hydrophobic domains.

Adjust with minimization and equilibration.
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Initial restraints

Restraining the protein prevents collapse during equilibration.
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Objective function

min
r

U(r).

Reduces clashes and improves initial stability.
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Gradient descent

rk+1 = rk − αk∇U(rk).

Robust method for minimizing high energies.
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Conjugate gradient

More efficient near the minimum.

Reduces the number of force evaluations.
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Harmonic restraints

Urest =
k

2

∑
i

∥ri − r0i ∥2.

Keep the structure while the solvent relaxes.
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Convergence criteria

Gradient norms and energy drop.

Stop when forces are small.
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Geometric check

Reasonable bond lengths and angles.

No steric clashes.
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Energy by component

Review LJ, Coulomb, and bond contributions.

Identify outliers.
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Comparison with reference

∆U = Unuevo − Uref.

Large differences signal parameterization issues.
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Stability check

Run a short NVT to catch numerical explosions.

Inspect potential energy and temperature.
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Stable solvent

Ensure there are no voids or overlaps.
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Checklist

Clean PDB, correct protonation, neutralized system.

Topology file saved.
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Save the system

Export PDB and topology with parameters.

Save the minimized state.
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Output formats

PDB, Amber prmtop/inpcrd, OpenMM XML.
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Traceability

Log scripts and configurations used.

Version the parameters.
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Seeds and reproducibility

Save random generator seeds.

Document initial conditions.
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Folder structure

Separate inputs, results, and temporary files.

Simplifies auditing and system reuse.
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Episode summary

Preparing the system is key for reliable results.

Protonation and solvation decisions impact the dynamics.

Thorough validation avoids costly mistakes.
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