
Practical Course on Molecular Dynamics and Trajectory
Analysis

Episode 5: Trajectory analysis

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya
Facultat de Ciències, Tecnologia i Enginyeries (FCTE)

jordi.villa@uvic.cat

MD Course and Trajectory Analysis
Concepcion, January 2026

1 / 19



Contents

1 Episode 5: Trajectory analysis
Preprocessing and cleanup
Velocities and inertia
Reduction and clustering
Free energies and surfaces
Statistics and confidence
Summary

2 / 19



Pre-analysis pipeline

1 Convert and clean trajectories with simulatePdb.py or
simulateGromacs.py.

2 Align structures and strip irrelevant solvent.

3 Define atom subsets and write DCD/NetCDF for downstream
analysis.

Scripts from the OpenMM Application Layer. [2]

3 / 19

https://github.com/openmm/openmm/blob/master/examples/python-examples/simulatePdb.py
https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateGromacs.py


Velocities and distributions

‘StateDataReporter‘ and ‘DCDReporter‘ build histograms of vi and
energies.

By the equipartition theorem: ⟨K ⟩ = 3N
2 kBT for classical systems.

Monitoring C (t) = ⟨A(0)A(t)⟩ reveals the relevant timescales.

4 / 19



RMSD and alignments

RMSD(t) =

√√√√ 1

N

N∑
i=1

∥ri (t)− rrefi ∥2.

Use the Kabsch algorithm for optimal rotations.

Document with simulateAmber.py and per-replica CSV output.

5 / 19

https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py


Radius of gyration and inertia tensor

Iab =
∑
i

mi

(
r2i δab − riarib

)
.

Eigenvalues of I describe global anisotropy.

Monitor R2
g = 1

N

∑
i mi∥ri − rCM∥2 per replica.

6 / 19



Extremes and contacts

Binary maps with a 0.45 nm cutoff generate contact matrices.

Columns represent domain changes detected by simulateCharmm.py.

7 / 19

https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateCharmm.py


Covariance and PCA

C = ⟨(x− ⟨x⟩)(x− ⟨x⟩)T ⟩.

Project onto the leading eigenvectors and define event axes.

Relate to coarse grained polymer.py to compare slow modes of
polymers and proteins.

8 / 19

https://openmm.github.io/openmm-cookbook/latest/notebooks/tutorials/coarse_grained_polymer.html


Hierarchical clustering

Use average linkage and silhouette index to decide k.

Poor choices yield empty microstates; prefer progressive trials.

9 / 19



Transitions and graphs

State graphs (see ‘graph.png‘) represent kinetic channels.

Annotated edges reflect fluxes measured by OpenMMTools scripts.

10 / 19



Eigenvalues and modes

Cw = λw, λ ∈ R+.

Dominant modes identify collective motions.

Save projections to feed Markov models.

11 / 19



Density functions

g(r) =
1

4πr2ρ

〈∑
i ̸=j

δ(r − rij)

〉
.

Compare with argon-chemical-potential.py for validation.

Use reweighted histograms to estimate F (r) = −kBT ln g(r).

12 / 19

https://github.com/openmm/openmm/blob/master/examples/python-examples/argon-chemical-potential.py


Free energy surfaces and barriers

Projection F (s) = −kBT lnP(s) requires robust CVs.

Integrate with ‘umbrella sampling‘ windows and combine with MBAR.

Compare 1D profiles with simulateAmber.py.

Validate using manually overlapping histograms.

13 / 19

https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateAmber.py


Bootstrap and blocking

Resample blocks to estimate variances.

Autocorrelations (see bs autocorrelation.pdf) determine the
block size.

14 / 19



Block autocorrelations

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

protein

water

time / ps




<
∆

ε
(0

)∆
ε
(t

)>
0
/<

∆
ε
(0

)∆
ε
(0

)>
0

Autocorrelation of the energy gap
in water and protein for the LADH system

Fenz similar to Fwater

Source: OpenMM Cookbook (simulation parameters). [1]

15 / 19



Error series

σĀ =
σA√
Neff

, Neff =
N

g
, g = 1 + 2

∑
t

ρ(t).

16 / 19



Final reports

Generate RMSD/RMSF/radius of gyration tables with
simulateCharmm.py.

Export CSV/HDF for easy handoff to PyEMMA/Deeptime.

17 / 19

https://github.com/openmm/openmm/blob/master/examples/python-examples/simulateCharmm.py


Summary and next step

Preprocess without artifactual PBC.

Stable CVs and converged histograms.

Reports with errors and documented trajectories.

Use the prepared features as input for PyEMMA/Deeptime.

18 / 19



References I

[1] OpenMM Cookbook. Autocorrelation example from Selecting Values
for Simulation Parameters. CC BY-SA 4.0. url:
https://openmm.github.io/openmm-cookbook/latest/

notebooks/tutorials/simulation_parameters.html (visited on
01/12/2026).

[2] OpenMM developers. OpenMM application guide. Reference for
scripting and workflow examples. 2024. url: https:
//docs.openmm.org/latest/userguide/application.html.

19 / 19

https://openmm.github.io/openmm-cookbook/latest/notebooks/tutorials/simulation_parameters.html
https://openmm.github.io/openmm-cookbook/latest/notebooks/tutorials/simulation_parameters.html
https://docs.openmm.org/latest/userguide/application.html
https://docs.openmm.org/latest/userguide/application.html

	Episode 5: Trajectory analysis
	Preprocessing and cleanup
	Velocities and inertia
	Reduction and clustering
	Free energies and surfaces
	Statistics and confidence
	Summary

	References

