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Why Markov State Models?

@ Molecular dynamics (MD) simulations generate high-dimensional
trajectories {X:}_,.

@ Relevant molecular processes occur on timescales much longer than
MD timesteps.

@ MSMs provide a statistical coarse-graining into discrete states with
Markovian dynamics.

@ Enable computation of long-timescale kinetics, populations, and
pathways.
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From continuous dynamics to a Markov chain

Consider a stochastic process X; in phase space €.
Partition Q into disjoint sets {51,..., Sy}
Define a discrete process X; € {1,..., N}:

Xt - I If Xt S 5,'.
@ Markov assumption at lag time 7:

P(Xt+T:J|Xt:I,)%P(Xt+T:J|Xt:I)
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Preparing molecular trajectories

@ Input trajectories from MD engines (OpenMM, Gromacs, AMBER,
).
@ Preprocessing:
e Remove periodic boundary artifacts.
e Align structures to a reference.
e Remove solvent if not used as features.
o Subsample to a uniform timestep At.

o Validate trajectories: energy stability, RMSD convergence.
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Feature extraction

e Each frame is mapped to a feature vector x; € RY.
@ Typical features:

o Interatomic distances or contacts.
o Dihedral angles.
e Ligand—protein distances.

@ Features should resolve slow collective motions.
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Covariance structure

X = <xt>7

Co = {(xe = X)(xe = %) 7).

@ Averages over all frames and trajectories.

@ ( captures instantaneous correlations.
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Time-lagged covariance

Cr = ((xe = X)(Xe4r — %) 7).

@ Measures correlations persisting over lag time 7.
@ Slow processes correspond to large time-lagged correlations.

@ This procedure is known as time-lagged independent component
analysis (TICA): the eigenvectors of C; define the slow collective

coordinates (tICs).
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Generalized eigenvalue problem

CTW,' = )\,'Cow,'.

o Eigenvectors w; define tICs.
@ Projection:

Yijt = W Xt.
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Implied timescales

T

ti=——or.
! In)\,-

@ Estimates relaxation timescales of slow modes.

o Plateaus vs. 7 indicate robust dynamics.
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Clustering into microstates

@ Project data onto first m tlCs.
o Cluster in reduced space (e.g. k-means).

@ Each frame assigned to a discrete state J.
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Discrete trajectories

@ Continuous trajectories become symbol sequences:
X — (x(gn), . ,X(Tn)).

@ These sequences define the MSM input.
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Transition counts

Gi() =D I Xe = i, Xe 17 = ).
t

@ Counts transitions from i to j at lag time 7.
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Transition matrix

oy Ci(7)
) = Gy

@ Row-stochastic matrix.

@ Interpreted as conditional probabilities.
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Detailed balance

i Tjj = 7 Tji.

@ Expected for equilibrium simulations.

@ Enforcing reversibility reduces statistical noise.
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Stationary distribution

' T=n'.

@ m; gives equilibrium populations.

@ Free energies:
F; = —kg T Inm; 4+ const.
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Eigenvalues and timescales

T

|n)\,-'

Tr; = \jrj, ti = —

@ )\; = 1 corresponds to equilibrium.

@ Spectral gap indicates timescale separation.

17/25



Chapman—Kolmogorov test

@ Markovianity check:

T(n7)~ T(7)".

@ Agreement validates chosen lag time.

@ Passing CK ensures that the implied kinetics remain invariant when
propagation is computed at multiples of the base lag, confirming the
MSM describes the same slow modes.

@ The plotted curves for all macrostates overlap tightly, so powering the

lag-5 transition matrix reproduces the directly estimated probabilities
and the CK test endorses 7 = 0.5 ns for downstream analysis.
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Transition Path Theory overview

@ TPT builds on the MSM coarse graining to identify dominant
pathways between user-defined reactant and product macrostates.

@ It solves for the committor (probability of reaching the product before
returning to the reactant) and computes reactive fluxes that quantify
the net probability current supporting those transitions.

o Together the committor and flux highlight where the slow dynamics
concentrate and which state-to-state hops carry the most weight in
the MSM.
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PCCA++ metastable clustering

@ Perron cluster cluster analysis (PCCA-++) exploits the slow
eigenvectors of the MSM transition matrix to define fuzzy
memberships to macrostates.

@ Each microstate carries a vector of probabilities, leading to metastable
sets that preserve the kinetics encoded in the slow modes.

o Coarse-grained states are therefore suited for human interpretation
and downstream analysis (MFPTs, representative structures, etc.).

@ Selecting a small number of macrostates keeps the essential
long-timescale behavior and prepares reactant/product sets for TPT.
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Metastable set assignments

@ A crisp assignment can be obtained by taking the argmax of the
membership vector for each microstate.

@ The resulting macrostates label dense basins or transition regions in
the slow collective coordinates.

@ These macrostates control the initial/final sets in TPT computations,
ensuring that committors and fluxes are defined between physically
meaningful ensembles.

21/25



Committor function

@ Define reactant set A and product set B.

@ Forward committor:
gi=>Y Tijg, a=0(icA), qg=1(cB)
J

@ The committor is the probability to reach B before returning to A and
defines reactive surfaces.
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Reactive fluxes

o TPT flux:
fij = miTjjai(1 — q5)

@ Measures net current along transition tubes and highlights dominant
pathways.
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Reactive flux

fij = mi Tijqi(1 — qj).

o ldentifies dominant reactive pathways.
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