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Facultat de Ciències, Tecnologia i Enginyeries (FCTE)

jordi.villa@uvic.cat

MD Course and Trajectory Analysis
Concepcion, January 2026

1 / 25



Contents

1 Episode 6: Markov models with PyEMMA
Motivation and theoretical background
Trajectory preparation
Feature representation
Time-lagged Independent Component Analysis
Discretization
MSM estimation
Spectral analysis and validation
Metastable coarse graining with PCCA++
Transition Path Theory

2 / 25



Why Markov State Models?

Molecular dynamics (MD) simulations generate high-dimensional
trajectories {Xt}Tt=0.

Relevant molecular processes occur on timescales much longer than
MD timesteps.

MSMs provide a statistical coarse-graining into discrete states with
Markovian dynamics.

Enable computation of long-timescale kinetics, populations, and
pathways.
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From continuous dynamics to a Markov chain

Consider a stochastic process Xt in phase space Ω.

Partition Ω into disjoint sets {S1, . . . ,SN}.
Define a discrete process Xt ∈ {1, . . . ,N}:

Xt = i if Xt ∈ Si .

Markov assumption at lag time τ :

P(Xt+τ = j | Xt = i , . . .) ≈ P(Xt+τ = j | Xt = i).
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Preparing molecular trajectories

Input trajectories from MD engines (OpenMM, Gromacs, AMBER,
. . . ).

Preprocessing:

Remove periodic boundary artifacts.
Align structures to a reference.
Remove solvent if not used as features.
Subsample to a uniform timestep ∆t.

Validate trajectories: energy stability, RMSD convergence.
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Feature extraction

Each frame is mapped to a feature vector xt ∈ Rd .

Typical features:

Interatomic distances or contacts.
Dihedral angles.
Ligand–protein distances.

Features should resolve slow collective motions.

6 / 25



Covariance structure

x̄ = ⟨xt⟩,
C0 = ⟨(xt − x̄)(xt − x̄)T ⟩.

Averages over all frames and trajectories.

C0 captures instantaneous correlations.
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Time-lagged covariance

Cτ = ⟨(xt − x̄)(xt+τ − x̄)T ⟩.

Measures correlations persisting over lag time τ .

Slow processes correspond to large time-lagged correlations.

This procedure is known as time-lagged independent component
analysis (TICA): the eigenvectors of Cτ define the slow collective
coordinates (tICs).
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Generalized eigenvalue problem

Cτwi = λiC0wi .

Eigenvectors wi define tICs.

Projection:
yi ,t = wT

i xt .
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Implied timescales

ti = − τ

lnλi
.

Estimates relaxation timescales of slow modes.

Plateaus vs. τ indicate robust dynamics.
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Clustering into microstates

Project data onto first m tICs.

Cluster in reduced space (e.g. k-means).

Each frame assigned to a discrete state i .
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Discrete trajectories

Continuous trajectories become symbol sequences:

X (n) = (x
(n)
0 , . . . , x

(n)
Tn

).

These sequences define the MSM input.
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Transition counts

Cij(τ) =
∑
t

I(Xt = i ,Xt+τ = j).

Counts transitions from i to j at lag time τ .
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Transition matrix

Tij(τ) =
Cij(τ)∑
k Cik(τ)

.

Row-stochastic matrix.

Interpreted as conditional probabilities.
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Detailed balance

πiTij = πjTji .

Expected for equilibrium simulations.

Enforcing reversibility reduces statistical noise.
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Stationary distribution

πTT = πT .

πi gives equilibrium populations.

Free energies:
Fi = −kBT lnπi + const.
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Eigenvalues and timescales

T ri = λi ri , ti = − τ

lnλi
.

λ1 = 1 corresponds to equilibrium.

Spectral gap indicates timescale separation.

17 / 25



Chapman–Kolmogorov test

Markovianity check:
T (nτ) ≈ T (τ)n.

Agreement validates chosen lag time.

Passing CK ensures that the implied kinetics remain invariant when
propagation is computed at multiples of the base lag, confirming the
MSM describes the same slow modes.

The plotted curves for all macrostates overlap tightly, so powering the
lag-5 transition matrix reproduces the directly estimated probabilities
and the CK test endorses τ = 0.5 ns for downstream analysis.
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Transition Path Theory overview

TPT builds on the MSM coarse graining to identify dominant
pathways between user-defined reactant and product macrostates.

It solves for the committor (probability of reaching the product before
returning to the reactant) and computes reactive fluxes that quantify
the net probability current supporting those transitions.

Together the committor and flux highlight where the slow dynamics
concentrate and which state-to-state hops carry the most weight in
the MSM.
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PCCA++ metastable clustering

Perron cluster cluster analysis (PCCA++) exploits the slow
eigenvectors of the MSM transition matrix to define fuzzy
memberships to macrostates.

Each microstate carries a vector of probabilities, leading to metastable
sets that preserve the kinetics encoded in the slow modes.

Coarse-grained states are therefore suited for human interpretation
and downstream analysis (MFPTs, representative structures, etc.).

Selecting a small number of macrostates keeps the essential
long-timescale behavior and prepares reactant/product sets for TPT.
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Metastable set assignments

A crisp assignment can be obtained by taking the argmax of the
membership vector for each microstate.

The resulting macrostates label dense basins or transition regions in
the slow collective coordinates.

These macrostates control the initial/final sets in TPT computations,
ensuring that committors and fluxes are defined between physically
meaningful ensembles.
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Committor function

Define reactant set A and product set B.

Forward committor:

qi =
∑
j

Tijqj , qi = 0 (i ∈ A), qi = 1 (i ∈ B).

The committor is the probability to reach B before returning to A and
defines reactive surfaces.
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Reactive fluxes

TPT flux:
fij = πiTijqi (1− qj)

Measures net current along transition tubes and highlights dominant
pathways.
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Reactive flux

fij = πiTijqi (1− qj).

Identifies dominant reactive pathways.
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