Statistical Learning

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Study Abroad

jordi.villa@uvic.cat

course 2023-2024

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

< ロ > < 同 > < 回 > < 回 >

FACULTAT DE CIÊNCIES, TECNOLOGIA LENGINYERIES

Índex

Jordi Villà i Freixa (FCTE)

Statistical Learning

Preliminary note

The material in these slides is strongly based on [?]. When other materials are used, they are cited accordingly.

Mathematical notation follows as good as it can a good practices proposal from the Beijing Academy of Artificial Intelligence.

< □ > < 同 > < 回 > < 回 > < 回 >

DE CIÊNCIES, TECNOLOGI, L'ENGINYERIES

What to expect?

In this session we will discuss:

- Modelling data.
- Models with independent and identically distributed (iid) data.
- The modelling dilemma.
- Clustering as an example of unsupervised learning method.
- Loss function and risk.
- Polynomial regression.

DE CIÊNCIES, TECNOLOGIA I ENGINYERIES

How is data analyzed and used?

- Statistical learning interpret the model and quantify the uncertainity of the data.
- Machine learning (or *data mining*) making predictions using large scale data.
- The goals of modelling data are:
 - to predict data, based on existing one;
 - to discover unusual or interesting patterns in data.

5/1

< ロ > < 同 > < 回 > < 回 >

Types of machine learning

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

Supervised vs unsupervised

Figure 2: Supervised vs unsupervised ML

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

7/1

INGINYERIES

Example of modelling data I

Imagine an unsupervised learning problem, with data represented by a vector $\mathbf{x} = [x_1, ..., x_p]^{\mathsf{T}}$, a very general model is to assume that \mathbf{x} is the outcome of a random vector $\mathbf{X} = [X_1, ..., X_p]^{\mathsf{T}}$ with some unknown pdf f.

The model can be refined by assuming a specific form of f.

Example of modelling data II

Figure 3: Some unknown pdf f from which data in Figure **??** was sampled.

-

< 個 > < ∃

9/1

E CIÊNCIES, TECNOLOG ENGINYERIES

Example of method for unsupervised learning: K-means clustering

- Specify the number of clusters K
- ② Randomly initialize the cluster centers (centroids)
- Solution Assign each data point to the closest centroid
- recalculate the cluster centroids from the mean of the data points in the cluster
- ome back to step 3 if not converged

Figure 4: Clustering

course 2023-2024

Example of unsupervised modelling

Exercise 1 Unsupervised learning

Using the data in this file, try to find 3 clusters using the K-means method.

GINYERIES

Tools to model data

Function approximation Model data with approximate and simple functions or maps.

- Optimization Given a set of feasible mathematical models to the data, we may need to find the optimal one by fitting or callibrating a function to observed data.
- Probability and Statistics Probability theory and statistical inference provides ways to quantify the uncertainity inherent in making predictions based on observed data.

ACULIAI DE CIÊNCIES, TECNOLO

iid data

If we are given a sequence of data vectors $\mathbf{x}_1, ..., \mathbf{x}_1$ one of the simplest possible models is to assume that the corresponding random vectors $\mathbf{X}_1, ..., \mathbf{X}_n$ are independent and identically distributed (iid). We express this as:

$$\mathbf{X}_1, \dots, \mathbf{X}_n \stackrel{iid}{\sim} f$$

meaning that the random vectors form an iid sample from a pdf f or sampling distribution Dist.

This is the same as saying that knowing about one variable does not provide information about another variable.

13/1

イロト イ伺ト イヨト イヨト

Independent data models

In independent data models, the joint density of the random vectors $X_1, ..., X_n$ is the *product* of the marginal ones:

$$f_{\mathbf{X}_1,\dots,\mathbf{X}_n}(\mathbf{x}_1,\dots,\mathbf{x}_n) = f(\mathbf{x}_1)\dots f(\mathbf{x}_n)$$

The function $g(\mathbf{x})$, our "model" for $f(\mathbf{x})$, is usually specified up to a small number of parameters, corresponding to :

- $\mathcal{N}(\mu, \sigma^2)$
- Bin(n, p)
- Exp(λ)

The parameters are typically obtained from the data.

14/1

< ロ > < 同 > < 回 > < 回 >

Modeling dilemma

Figure 5: Complex models (very few of them) generally applicable but difficult to analyze. Simple models (a lot of options) very tractable but they do not describe well the data[?].

Jordi Villà i Freixa (FCTE)

Tradeoff

There exists a tradeoff between model tractability and applicability, as seen in Figure **??**. Coming back to the example in page **??**, the *training* set $\tau = {\mathbf{x}_1, ..., \mathbf{x}_n}$ is viewed as the outcome of n iid random variables $\mathbf{X}_1, ..., \mathbf{X}_n$ for some unknown pdf f.

Goal: to learn or estimate *f* from the finite training set.

Tradeoff vs risk

Imagine the **unsupervised learning** framework shown before. We can specify a class (a collection) of pdfs that we will call G_p :

- We seek within \mathscr{G} the best approximation to the true model pdf $f(\mathbf{x},$ and we will call it $g(\mathbf{x}|)$.
- Such best approximation will minimize some calculated risk. $Loss(f(\mathbf{x}), g(\mathbf{x}|))) = \ln f(\mathbf{x}) - \ln g(\mathbf{x}|)$

with expected value, this is, the risk as

$$\ell(g) = \mathbb{E} \ln \frac{f(\mathbf{X})}{g(\mathbf{X}|)} = \int f(\mathbf{x}) \ln \frac{f(\mathbf{x})}{g(\mathbf{x}|)} \, \mathrm{d}\mathbf{x}$$

< □ > < □ > < □ > < □ > < □ > < □ >

FACULTAT DE CIÊNCIES, TECNOLO

Train-Test-Validate

Figure 6: Sometimes we use the second set of data for model validation. Then we need to use a third one for testing.

Train-Test-Validate

To compare the predictive performance of various learners in \mathcal{G} , as measured by the test loss,

- we can use the same fixed training set τ and test set τ' for different learners, or
- if the overall data set is of modest size, we can perform the validation phase (model selection) on the training set only, using cross-validation.

DE CIÊNCIES, TECNOLO

19/1

course 2023-2024

Polynomial regression. Original data.

Figure 7: Training data and the optimal polynomial prediction function h_{Training}^{*}

Jordi Villà i Freixa (FCTE)

- E - N

20/1

< □ > < 同 >

Polynomial regression. Fitting.

Figure 8: Fitted models for different orders of polynomial regressions [?]

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

21/1

Image: A math a math

Polynomial regression. Error.

Figure 9: Fitted models for different orders of polynomial regressions [?]

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

-

22/1

Polynomial regression. Cross validation.

Figure 10: a) Example of four-fold cross-validation, representing four copies of the same data set. The data in each copy is partitioned into a training set (pink) and a test set (blue). Darker columns are the response variable; and lighter ones the explanatory variables. b) K-fold cross-validation for the polynomial regression[?].

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

DE CIÊNCIES, TECNOLOG I ENGINYERIES

Annex: detailed notation

Given an input or *feature* vector \mathbf{x} , ML aims at predicting an ouput or *response* variable vector \mathbf{y} . In particular, we search for a mathematical *prediction function* g such that we can *guess* an approximation to \mathbf{y} , $\hat{\mathbf{y}}$:

$$g: \mathscr{X} \to \mathscr{Y}$$
$$\mathbf{x} \mapsto \hat{\mathbf{y}} = g(\mathbf{x})$$

Definition

Dataset $S = \{i\}_{i=1}^{n} = \{(i, i)\}_{i=1}^{n}$ is sampled from a distribution \mathscr{D} over a domain $\mathscr{Z} = \mathscr{X} \times \mathscr{Y}$. \mathscr{X} is the instance domain (a set), \mathscr{Y} is the label domain (a set), and $\mathscr{Z} = \mathscr{X} \times \mathscr{Y}$ is the example domain (a set).

< ロ > < 同 > < 回 > < 回 >

FACULTAT DE CIÊNCIES, TECNOLO I ENGINYERIES

Usually, \mathscr{X} is a subset of \mathbb{R}^d and \mathscr{Y} is a subset of \mathbb{R}^{d_o} , where d is the input dimension, d_o is the output dimension. n = #S is the number of samples. Without specification, S and n are for the training set.

- In regression problems, y is a vector of real values.
- In *classification* problems, y values lie within a finite set of c categories: y ∈ {0, 1, ..., c − 1}.

25/1

< ロ > < 同 > < 回 > < 回 > < 回 >

Definition

A hypothesis space is denoted by \mathcal{H} . A hypothesis function is denoted by $f_{\theta 0}() \in \mathcal{H}$ or $f(; \theta 0) \in \mathcal{H}$ with $f_{\theta 0} : \mathcal{H} \to \mathcal{Y}$.

 $\theta \mathbf{0}$ denotes the set of parameters of $f_{\theta \mathbf{0}}$. If there exists a target function, it is denoted by f^* or $f: \mathscr{X} \to \mathscr{Y}$ satisfying $_i = f^*(_i)$ for i = 1, ..., n. A loss function, denoted by $\ell: \mathscr{H} \times \mathscr{Z} \to \mathbb{R}_+ := [0, +\infty)$, measures the difference (or error) between a predicted label and a true label, e.g., L^2 loss:

$$\ell(f_{\theta 0},) = \frac{1}{2}(f_{\theta 0}()-)^2,$$

where = (,). $\ell(f_{\theta 0},)$ can also be written as

 $\ell(f_{\theta \mathbf{0}}(),)$

for convenience.

(In the case of a classification, $\ell(f_{\theta 0},) = \mathbb{1}\{y \neq \hat{}\}$)

We will see other useful loss functions ({em cross entropy} or *hinge* loss functions) later in this course.

It is unlikely that a mathematical function $g \equiv f_{\theta 0} : \mathscr{X} \to \mathscr{Y}$ would be able to make accurate predictions of all possible pairs $\mathscr{Z} = \mathscr{X} \times \mathscr{Y}$.

So, we use a probabilistic approach here to mpirical risk or training loss for a set $S = \{(i, i)\}_{i=1}^{n}$ is denoted by $L_{S}(\theta \mathbf{0})$ or $L_{n}(\theta \mathbf{0})$ or $R_{n}(\theta \mathbf{0})$ or $R_{S}(\theta \mathbf{0})$,

$$L_{\mathcal{S}}(\theta \mathbf{0}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta \mathbf{0}}(i), i).$$
(1)

Jordi Villà i Freixa (FCTE)

Statistical Learning

course 2023-2024

< □ > < □ > < □ > < □ > < □ > < □ >

E CIÉNCIES, TECNOLOI

The population risk or expected loss is denoted by $L_{\mathscr{D}}(\theta \mathbf{0})$ or $R_{\mathscr{D}}(\theta \mathbf{0})$

 $L_{\mathcal{D}(\theta\mathbf{0})=\mathbb{E}_{\mathcal{D}}\ell(f_{\theta\mathbf{0}}(),),\left(2\right)}$

where = (,) follows the distribution \mathscr{D} . (In the case of a classification, we denote $L_{\mathscr{D}(g)\equiv L_{\mathscr{D}(\theta 0)=\mathbb{P}_{\mathscr{D}}[f_{\theta 0}()\neq]}}$ and we say that g is a classifier.) Because we are interested in minimizing the risk in our prediction, we are looking for the best possible g^* : = $\operatorname{argmin}_g \mathbb{E}_{\mathscr{D}}\ell(f_{\theta 0}(),)$ (In classification, we look for $g^*() = \operatorname{argmax}_{y \in \{0,1,\dots,c-1\}} \mathbb{P}[Y = y | X = x]$.)

Jordi Villà i Freixa (FCTE)

course 2023-2024

28/1

ヘロト 人間ト 人団ト 人団ト

Theorem

For the squared-error loss $\ell(y, \hat{y}) = (y - \hat{y})^2$, the optimal prediction function g^* is equal to the conditional expectation of Y given = .

which leads to write the random response Y as:

$$Y = g^*() + \varepsilon()$$

Note that such random deviation satisfies $\mathbb{E}\varepsilon() = 0$

Jordi Villà i Freixa (FCTE)