Statistical Learning

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Study Abroad

jordi.villa@uvic.cat

course 2023-2024

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) course 2023-2024 1 / 1

U FACULTAT
DE CIÈNCIES, TECNOLOGIA ENGINYERIES MOSTLANCARD 299

イロト イ押ト イヨト イヨト

Índex

Preliminary note

The material in these slides is strongly based on [**?**]. When other materials are used, they are cited accordingly.

Mathematical notation follows as good as it can a [good practices proposal](https://ctan.math.utah.edu/ctan/tex-archive/macros/latex/contrib/mlmath/mlmath.pdf) from the Beijing Academy of Artificial Intelligence.

イロト イ押ト イヨト イヨト

FACULTAT
DE CIÊNCIES, TECNOLOGIA NGINYEDIES

What to expect?

In this session we will discuss:

- Modelling data.
- Models with independent and identically distributed (iid) data.
- The modelling dilemma.
- Clustering as an example of unsupervised learning method. \bullet
- **•** Loss function and risk.
- Polynomial regression.

FACULTAT
DE CIÊNCIES, TECNOLOGIA **GINYEDIES**

つへへ

How is data analyzed and used?

- Statistical learning interpret the model and quantify the uncertainity of the data.
- Machine learning (or *data mining*) making predictions using large scale data.
- The goals of modelling data are:
	- to predict data, based on existing one;
	- to discover unusual or interesting patterns in data.

PRUULIAI
DE CIÈNCIES, TECNOLOGIA

Types of machine learning

Supervised vs unsupervised

Figure 2: Supervised vs unsupervised ML

←□

ne cubarere, vecano e **GINYERIES MOCCARGAN** 290

Example of modelling data I

Imagine an unsupervised learning problem, with data represented by a vector $\mathbf{x} = [x_1, ..., x_p]^\top$, a very general model is to assume that \mathbf{x} is the outcome of a random vector $\mathbf{X} = [X_1, ... \, , X_p]^\top$ with some unknown pdf f .

The model can be refined by assuming a specific form of f .

(ロト (何) (ヨ) (ヨ)

FACULTAT
DE CIÊNCIES, TECNOLOGIA

Example of modelling data II

Figure 3: Some unknown pdf from which data in Figure **[??](#page-6-1)** was sampled.

Example of method for unsupervised learning: K-means clustering

- \bullet Specify the number of clusters K
- Randomly initialize the cluster centers (centroids)
- Assign each data point to the closest centroid
- **4** recalculate the cluster centroids from the mean of the data points in the cluster
- **5** come back to step 3 if not converged

Figure 4: Clustering

 \mathbf{v} and \mathbf{v}

Example of unsupervised modelling

Exercise 1 Unsupervised learning

Using the data in [this file,](https://raw.githubusercontent.com/Biocomputing-Teaching/Data-Science-with-Python/main/code/datasets/clusterdata.csv) try to find 3 clusters using the K-means method.

Tools to model data

Function approximation Model data with approximate and simple functions or maps.

- Optimization Given a set of feasible mathematical models to the data, we may need to find the optimal one by fitting or callibrating a function to observed data.
- Probability and Statistics Probability theory and statistical inference provides ways to quantify the uncertainity inherent in making predictions based on observed data.

DE CIÈNCIES, TECNOLOGIA

 Ω

(ロ) (個) (目) (美)

iid data

If we are given a sequence of data vectors $x_1, ..., x_1$ one of the simplest possible models is to assume that the corresponding random vectors $\mathbf{X}_1, ..., \mathbf{X}_n$ are independent and identically distributed (iid). We express this as:

$$
\mathbf{X}_1, \dots, \mathbf{X}_n \stackrel{iid}{\sim} f
$$

meaning that the random vectors form an iid sample from a pdf f or sampling distribution Dist.

This is the same as saying that knowing about one variable does not provide information about another variable.

イロト イ押ト イヨト イヨト

Independent data models

In independent data models, the joint density of the random vectors $\mathbf{X}_1, ..., \mathbf{X}_n$ is the *product* of the marginal ones:

$$
f_{\mathbf{X}_1,\dots,\mathbf{X}_n}(\mathbf{x}_1,\dots,\mathbf{x}_n)=f(\mathbf{x}_1)\dots f(\mathbf{x}_n)
$$

The function $g(x)$, our "model" for $f(x)$, is usually specified up to a small number of parameters, corresponding to [:](#page-0-1)

- $\mathcal{N}(\mu, \sigma^2)$
- \bullet Bin(*n*, *p*)
- \bullet Exp(λ)

The parameters are typically obtained from the data.

イロト イ押ト イヨト イヨト

Modeling dilemma

Figure 5: Complex models (very few of them) generally applicable but difficult to analyze. Simple models (a lot of options) very tractable but they do not describe well the data[**?**]. FACULTAT
DE CIÊNCIES, TECNOLOGIA **ENGINYERIES**

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) Course 2023-2024 15/1

ふくぼう

4 **E** F

Tradeoff

There exists a tradeoff between model tractability and applicability, as seen in Figure **[??](#page-14-0)**. Coming back to the example in page **[??](#page-7-0)**, the training set $\tau = \{x_1, ..., x_n\}$ is viewed as the outcome of *n* iid random variables $\mathbf{X}_1, ..., \mathbf{X}_n$ for some unknown pdf f .

Goal: to learn or estimate f from the finite training set.

DE CIÈNCIES, TECNOLOGIA

Tradeoff vs risk

Imagine the **unsupervised learning** framework shown before. We can specify a class (a collection) of pdfs that we will call G_p :

- \bullet We seek within $\mathcal G$ the best approximation to the true model pdf $f(\mathbf x, \mathbf y)$ and we will call it $g(\mathbf{x})$.
- Such best approximation will minimize some calculated risk.

$$
Loss(f(\mathbf{x}), g(\mathbf{x}))) = \ln f(\mathbf{x}) - \ln g(\mathbf{x}))
$$

with expected value, this is, the **risk** as

$$
\ell(g) = \mathbb{E} \ln \frac{f(\mathbf{X})}{g(\mathbf{X})} = \int f(\mathbf{x}) \ln \frac{f(\mathbf{x})}{g(\mathbf{x})} d\mathbf{x}
$$

(ロト (何) (ヨ) (ヨ)

DE CIÊNCIES, TECNOLOG

Train-Test-Validate

Figure 6: Sometimes we use the second set of data for model validation. Then we need to use a third one for testing.

Train-Test-Validate

To compare the predictive performance of various learners in \mathscr{G} , as measured by the test loss,

- we can use the same fixed training set τ and test set τ' for different learners, or
- \bullet if the overall data set is of modest size, we can perform the validation phase (model selection) on the training set only, using **cross-validation**.

DE CIÈNCIES, TECNOLOGIA

 Ω

化重新润滑脂

Polynomial regression. Original data.

Figure 7: Training data and the optimal polynomial prediction function ℎ ∗ [**?**].

Jordi Villà i Freixa (FCTE) a la statistical Learning course 2023-2024 20/1

 $\leftarrow \equiv$

4日下

∢母

Polynomial regression. Fitting.

Figure 8: Fitted models for different orders of polynomial regressions[**?**]. **ENGINYERIES MACLUMOUSE**

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) course 2023-2024 21/1

← ロ → → ← 何 →

Polynomial regression. Error.

Figure 9: Fitted models for different orders of polynomial regressions[**?**]. ENGINYERIES

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) course 2023-2024 22 / 1

э \sim

 -4 ÷

 \rightarrow

← ロ → → ← 何 →

MAC LUMB LCC QQ

Polynomial regression. Cross validation.

Figure 10: a) Example of four-fold cross-validation, representing four copies of the same data set. The data in each copy is partitioned into a training set (pink) and a test set (blue). Darker columns are the response variable; and lighter ones the explanatory variables. b) K-fold cross-validation for the polynomial regression[**?**].

 \mathbf{v} and \mathbf{v}

DE CIÊNCIES, TECNOLOGIA **GINYERIES**

Annex: detailed notation

Given an input or feature vector **x**, ML aims at predicting an ouput or response variable vector **y**. In particular, we search for a mathematical prediction function g such that we can guess an approximation to **y**, \hat{y} :

$$
g: \mathcal{X} \to \mathcal{Y}
$$

$$
\mathbf{x} \mapsto \hat{\mathbf{y}} = g(\mathbf{x})
$$

Definition

Dataset $S = \{i\}_{i=1}^n = \{(i, j)\}_{i=1}^n$ is sampled from a distribution \mathscr{D} over a domain $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$. $\mathcal X$ is the instance domain (a set), $\mathcal Y$ is the label domain (a set), and $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ is the example domain (a set).

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) Course 2023-2024 24/1

(ロト (何) (ヨ) (ヨ)

DE CIÊNCIES, TECNOLOR

Usually, $\mathscr X$ is a subset of $\mathbb R^d$ and $\mathscr Y$ is a subset of $\mathbb R^{d_o}$, where d is the input dimension, d_0 is the output dimension.

 $n = \# S$ is the number of samples. Without specification, S and n are for the training set.

- In *regression* problems, y is a vector of real values.
- In *classification* problems, y values lie within a finite set of c categories: $y \in \{0, 1, ..., c - 1\}$.

(ロ) (*同*) (ヨ) (ヨ)

HUULIAI
DE CIÈNCIES, TECNOLO

Definition

A hypothesis space is denoted by $\mathcal X$. A hypothesis function is denoted by $f_{\theta 0}(x) \in \mathcal{H}$ or $f(z|\theta 0) \in \mathcal{H}$ with $f_{\theta 0}: \mathcal{X} \to \mathcal{Y}$.

 θ 0 denotes the set of parameters of $f_{\theta 0}$. If there exists a target function, it is denoted by f^* or $f:\mathscr{X}\to\mathscr{Y}$ satisfying $_i = f^*(i)$ for $i = 1, ..., n$. A loss function, denoted by $\ell : \mathcal{H} \times \mathcal{Z} \to \mathbb{R}_+ := [0, +\infty)$, measures the difference (or error) between a predicted label and a true label, e.g., L^2 loss:

$$
\ell(f_{\theta 0\prime})=\frac{1}{2}(f_{\theta 0}(t)-)^2,
$$

where = (,). $\ell(f_{\theta 0})$ can also be written as

 $\ell(f_{\theta 0})),$

for convenience.

(Inthe case of a classification, $\ell(f_{\theta 0},) = \mathbb{1}{y \neq \hat{}})$)

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) course 2023-2024 26 / 1

We will see other useful loss functions ($\{\epsilon$ m cross entropy) or *hinge* loss functions) later in this course.

It is unlikely that a mathematical function $g \equiv f_{\theta 0} : \mathcal{X} \to \mathcal{Y}$ would be able to make accurate predictions of all possible pairs $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$. So, we use a probabilistic approach here to mpirical risk or training loss for a set $S = \{(\,i, i)\}_{i=1}^n$ is denoted by $L_S(\theta \mathbf{0})$ or $L_n(\theta \mathbf{0})$ or $R_n(\theta \mathbf{0})$ or $R_S(\theta \mathbf{0})$,

$$
L_{S}(\theta \mathbf{0}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta \mathbf{0}}(i), i).
$$
 (1)

イロト イ押ト イヨト イヨト

DE CIÈNCIES, TECNOLOGIA

 Ω

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) Course 2023-2024 27/1

The population risk or expected loss is denoted by $L_{\mathscr{A}}(\theta 0)$ or $R_{\mathscr{A}}(\theta 0)$

 $L_{\mathscr{D}(\theta 0)=\mathbb{E}_{\mathscr{D}}\ell(f_{\theta 0}()),(2)}$

where $=$ (,) follows the distribution \mathcal{D} . (In the case of a classification, we denote $L_{\mathscr{D}(g)=L_{\mathscr{D}(\theta 0)=\mathbb{P}_{\mathscr{D}}\{f_{\alpha 0}(\neq\)}}$ and we say that g is a classifier.) Because we are interested in minimizing the risk in our prediction, we are looking for the best possible g^* : = $\operatorname{argmin}_g \mathbb{E}_{\mathscr{D}} \ell(f_{\theta \mathbf{0}}(),)$ (In classification, we look for $g^*() = \mathop{\rm argmax}_{g \in [0,1,\ldots,1]} \mathbb{P}[Y = y | X = x].$) $y \in \{0,1,\ldots,c-1\}$

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) course 2023-2024 28 / 1

 Ω

イロト イ押ト イヨト イヨト

Theorem

For the squared-error loss $\ell(y, \hat{y}) = (y - \hat{y})^2$, the optimal prediction function g^* is equal to the conditional expectation of Y given $\,$ = .

which leads to write the random response Y as:

$$
Y = g^*(1) + \varepsilon(1)
$$

Note that such random deviation satisfies $E\varepsilon() = 0$

Jordi Villà i Freixa (FCTE) [Statistical Learning](#page-0-0) Course 2023-2024 29/1